

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road — 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Differential Equation and Complex Analysis(20HS0831)

Course & Branch: B.tech - CE,EEE,ME,ECE & AGE

Regulation: R20 **Year & Sem:** I-B.Tech & II-Sem

UNIT –1 First and higher order Ordinary Differential Equations

1	a) Solve $(2x - y + 1)dx + (2y - x - 1)dy = 0$.	[L3][CO1]	[6M]
	b) Solve $(y^2 - 2xy)dx + (2xy - x^2)dy = 0$	[L6][CO1]	[6M]
2	a) Solve $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$	[L3][CO1]	[6M]
	b) Solve $(x^2-ay)dx = (ax-y^2)dy$	[L3][CO1]	[6M]
3	a) Solve $x \frac{dy}{dx} + y = logx$.	[L6][CO1]	[6M]
	b)Solve $\frac{dy}{dx} + 2xy = e^{-x^2}$	[L3][CO1]	[6M]
4	a) Solve $(1 + y^2)dx = (tan^{-1}y - x)dy$	[L3][CO1]	[6M]
	b)Solve $(x + 1)\frac{dy}{dx} - y = e^{3x}(x + 1)^2$	[L6][CO1]	[6M]
5	a) Solve $x \frac{dy}{dx} + y = x^3 y^6$.	[L6][CO1]	[6M]
	b) Solve $\frac{dy}{dx} + y \cdot tanx = y^2 secx$	[L6][CO1]	[6M]
6	a) Solve $(D^2 + 5D + 6)y = e^x$	[L3][CO1]	[6M]
	b)Solve $(D^2 - 4D + 3)y = 4e^{3x}$ given ; $y(0) = -1, y^1(0) = 3$	[L6][CO1]	[6M]
7	a) Solve $(D^2 - 3D + 2)y = \cos 3x$.	[L3][CO1]	[6M]
	b) Solve $(D^2 - 4D)y = e^x + \sin 3x \cdot \cos 2x$	[L3][CO1]	[6M]
8	a) Solve $(D^2 + 4D + 4)y = 4\cos x + 3\sin x$ b) Solve $(D^2 + 1)y = \sin x \cdot \sin 2x$	[L6][CO1]	[6M]
	b) Solve $(D + 1)y = \sin x \cdot \sin 2x$	[L3][CO1]	[6M]
9	a) Solve $(D^2 + 4)y = e^x + \sin 2x + \cos 2x$.	[L6][CO1]	[6M]
	b)Solve $(D^2 + D + 1)y = x^3$	[L6][CO1]	[6M]
10	a) Solve $(D^2 - 3D + 2)y = xe^{3x} + \sin 2x$	[L3][CO1]	[6M]
	b) Solve $(D^2 + 4D + 3)y = e^{-x}sinx + x$.	[L6][CO1]	[6M]

UNIT –2 Equations reducible to Linear Differential Equations

1	a) Solve $(D^2 + a^2)y = \tan ax$ by the method of variation of parameters.	[L3][CO2]	[6M]
	b)Solve $(D^2 - 2D)y = e^x \sin x$ by the method of variation of parameters.		
		[L6][CO2]	[6M]
2	a) Solve $(D^2 + 4)y = Sec2x$ by the method of variation of parameters.	[L3][CO2]	[6M]
	b) Solve $(D^2 + 1)y = Co \sec x$ by the method of variation of parameters.	[L6][CO2]	[6M]
3	a) Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$.	[L3][CO2]	[6M]
	ar ar	[L3][CO2]	[6M]
	b) Solve $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$		
4	a) Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12 \log x}{x^2}$	[L6][CO2]	[6M]
	b) Solve $(x^2D^2 - 4xD + 6)y = x^2$	[L3][CO2]	[6M]
5	Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = sin2[\log(1+x)]$	[L6][CO2]	[12M]
6	Solve $(1+x)^2 \frac{d^2y}{dx^2} - 3(1+x)\frac{dy}{dx} + 4y = x^2 + x + 1$	[L3][CO2]	[12M]
7	a) Solve $\frac{dx}{dt} = 3x + 2y$; $\frac{dy}{dt} + 5x + 3y = 0$.	[L3[CO2]	[6M]
	b) Solve $\frac{dy}{dx} + y = z + e^x$; $\frac{dz}{dx} + z = y + e^x$.	[L6][CO2]	[6M]
8	Solve	[L6][CO2]	[12M]
	$\frac{dx}{dt} + 2x + y = 0 ; \frac{dy}{dt} + x + 2y = 0; given x = 1 \text{ and } y = 0 \text{ when } t = 0$		
9	An uncharged condenser of capacity is charged applying an e.m.f $E \sin \frac{t}{\sqrt{LC}}$	[L5][CO2]	[12M]
	through leads of self-inductance L and negligible resistance. Prove that at time		
	't' the charge on one of the plates is $\frac{EC}{2} \left[\sin \frac{t}{\sqrt{LC}} - \frac{t}{\sqrt{LC}} \cos \frac{t}{\sqrt{LC}} \right]$.		
10	Find the current 'i' in the LCR circuit assuming zero initial current and charge	[L1][CO2]	[12M]
	q. If R=80 ohms, L=20 henrys, C=0.01 farads and E=100 V.		

UNIT-3 Partial Differential Equations

_	Tartiai Differentiai Equations	1	
1	a) Form the partial differential equation by eliminating the constants from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.	[L2][CO3]	[6M]
	b)Form the partial differential equation by eliminating the constants from	H 9110033	100
	$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ where '\alpha' is a parameter	[L2][CO3]	[6M]
2	a) Form the partial differential equation by eliminating the constants from $\int_{0}^{\infty} h(y-1) dy$	[L2][CO3]	[6M]
	$z = a \cdot \log \left[\frac{b(y-1)}{(1-x)} \right].$	[L2][CO3]	[6M]
	b) Form the partial differential equation by eliminating the constants from $log(az - 1) = x + ay + b$.		. ,
3	a) Form the partial differential equation by eliminating the arbitrary functions from	[L2][CO3]	[6M]
	$z = f(x^2 - y^2)$. b) Form the partial differential equation by eliminating the arbitrary functions	[L2][CO3]	[6M]
	from $\mathbf{z} = f(x) + e^y \cdot g(x)$		
4	a) Form the partial differential equation by eliminating the arbitrary function from $\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$	[L2][CO3]	[6M]
	$xyz = f(x^2 + y^2 + z^2)$ b) Form the partial differential equation by eliminating the arbitrary function from	[L2][CO3]	[6M]
	z = $xy + f(x^2 + y^2)$		[OIVI]
5	a) Form the P.D.E by eliminating the arbitrary function from	[L2][CO3]	[6M]
	$\emptyset\left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0$		
	b) Form the P.D.E by eliminating the arbitrary function from $f(x^2 + y^2, z - xy) = 0$.	[L2][CO3]	[6M]
6	a) Solve by the method of separation of variables	[L3][CO3]	[6M]
	$u_x = 2u_y + u$, where $u(x, 0) = 6e^{-3x}$?		
	a)Solve by the method of separation of variables	[L6][CO3]	[6M]
	$4u_x + u_y = 3u, given \ u(0, y) = e^{-5y}$		
7	a) Solve by the method of separation of variables $2u + 2u = 0 \text{ where } u(x, 0) = 4e^{-x}$	[L3][CO3]	[6M]
	$3u_x + 2u_y = 0$, where $u(x, 0) = 4e^{-x}$ b) Solve by the method of separation of variables	[L6][CO3]	[6M]
	$u_x - 4u_y = 0, where \ u(0, y) = 8e^{-3y}$	[][]	[0114]
8	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it is set to vibrate by giving each of its points a velocity $kx(l-x)$ find the displacement of the string at any distance from one end at any time t.	[L1][CO3]	[12M]
9	Find the temperature $u(x,t)$ in a bar OA of length l which is perfectly insulated laterally and whose ends O and A are kept at 0°C, given that the initial temperature at any point P of the rod (where OP=x) is given as $u(x,o) = f(x)$, $(0 \le x \le l)$.	[L1][CO3]	[12M]
10	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ with $u(0, y) = 0 = u(x, 0), u(l, y) = 0$ and	[L3][CO3]	[12M]
	$u(x,a)=\sin(\frac{n\pi x}{l})$	[-][- 30]	
	-	l	

UNIT-4 COMPLEX VARIABLE- DIFFERENTATION

1	Show that $u(x, y) = e^{2x} (x \cos 2y - y \sin 2y)$ is harmonic and find its harmonic conjugate.	[L1,L2][CO4]	[12M]
2	a) Show that $u = \frac{1}{2} log(x^2 + y^2)$ is harmonic.	[L2][CO4]	[6M]
	b) If $W = f(z)$ is analytic function then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left \operatorname{Re} alf(z) \right ^2 = 2 \left f^1(z) \right ^2$	[L5][CO4]	[6M]
3	a) Find 'a' and 'b' if $f(z) = (x^2 - 2xy + ay^2) + i(bx^2 - y^2 + 2xy)$ is analytic. Hence find $f(z)$ interms of z	[L1][CO4]	[6M]
	b) Find the analytic function whose imaginary part is $e^x(x \sin y + y \cos y)$.	[L1][CO4]	[6M]
4	a) Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{px}{y}\right)$ is analytic	[L5][CO4]	[6M]
	b) Find all the values of k, such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic.	[L1][CO4]	[6M]
5	a) If $f(z)=u+iv$ is an analytic function of z and if $u+v=e^x(\cos y-\sin y)$, Find $f(z)$ in terms of z.	[L1][CO4]	[6M]
	b) Find an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$.	[L1][CO4]	[6M]
6	a) Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.	[L2][CO4]	[6M]
	b) Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$.	[L2][CO4]	[6M]
7	a) Find the bilinear transformation which maps the points $(\infty, 0)$ into the points $(0,i,\infty)$.	[L1][CO4]	[6M]
	b) Find the image of the triangular region with vertices at $(0,0)(1,0)(0,1)$ under the transformation $w = (1-i)z + 3$.	[L1][CO4]	[6M]
8	a) Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$	[L1][CO4]	[6M]
	b)Show that the function $w = \frac{4}{z}$ transforms the straight line $x = c$ in the z-plane into a circle in the $w - plane$.	[L2][CO4]	[6M]
9	a) Find the bilinear transformation which maps the points $(\infty, i, 0)$ into the points	[L1][CO4]	[6M]
	 (-1, -i, 1) in w-plane. b)Find the bilinear transformation that maps the points(1, i, -1) into the points (2, i, -2) in w-plane. 	[L1][CO4]	[6M]
10	a) Find the image of infinite strip bounded by $x=0 \& x=\frac{\pi}{4}$ under the	[L1][CO4]	[6M]
	transformation $w = \cos z$.	T. 515G2 (2	
	b) Prove that the transformation $w = \sin z$ maps the families of lines $x = y = constant$ into two families of confocal central conics.	[L5][CO4]	[6M]

UNIT-5 COMPLEX VARIABLE- INTEGRATION

1	Show that $\int (z+1)dz = 0$ where C is the boundary of the square whose vertices at	[L2][CO5]	[12M]
	the points $z = 0, z = 1, z = 1 + i, z = i$		
2	the points $z = 0$, $z = 1$, $z = 1 + i$, $z = i$ a) Evaluate the line integral $\int (y - x - 3x^2i)dz$ where c consists of the line segments	[L5][CO5]	[6M]
	from $z=0$ to $z=i$ and the other from $z=i$ to $z=i+1$.		
	1+3;	[L5][CO5]	[6M]
	b) Evaluate $\int_{0}^{\infty} (x^2 - iy) dz$ along the path $y = x$.	[20][000]	[[]
3	Verify Cauchy's theorem for the function $f(z)=3z^2+iz-4$ if c is the square with	[L6][CO5]	[12M]
	vertices at $1 \pm i$ and $-1 \pm i$		
4	a) Evaluate using Cauchy's integral formula $\int \frac{\sin^6 z}{dz} dz$	[L5][CO5]	[6M]
	a) Evaluate using Cauchy's integral formula $\int_{c}^{c} \frac{\sin^{6} z}{\left(z - \frac{\pi}{2}\right)^{3}} dz$		
	(2)		
	around the circle $c: z =1$.		
	b) Evaluate $\int_{0}^{\infty} \frac{\log z dz}{(z-1)^3}$ where $c: z-1 =\frac{1}{2}$ using Cauchy's integral formula.	[L5][CO5]	[6M]
	$\int_{c}^{c} (z-1)^{3}$		
5	a) Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$.	[L2][CO5]	[6M]
	b) Expand $f(z) = \log z$ in Taylor's series about $z = 1$.	[L2][CO5]	[6M]
6	a) Find the Leurent's series expansion of the function $f(z) = z^2 - 6z - 1$	[L1][CO5]	[6M]
	a) Find the Laurent's series expansion of the function $f(z) = \frac{z^2 - 6z - 1}{(z - 1)(z - 3)(z + 2)}$		
	in the region $3 < z+2 < 5$.		
	b) Find the Leurent's series of the function $f(z)$		
	b) Find the Laurent's series of the function $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$.	[L1][CO5]	[6M]
7	a) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residues at each	[L5][CO5]	[6M]
	$(z-1)^2(z+2)$		
	pole.	[L1][CO5]	
	b) Find the residue of the function $f(z) = \frac{1}{(z^2 + 4)^2}$ where c is $ z - i = 2$	[][000]	[6M]
	, , ,	H 5110053	F () T
8	a) Evaluate $\int \frac{dz}{z^3(z+4)}$ where c is $ z =2$.	[L5][CO5] [L5][CO5]	[6M]
	$c \sim (\sim 1)$		[6M]
9	b) Determine the poles and residues of $tanhz$.	[L5][CO5]	[12M]
	Evaluate $\int_0^{2\pi} \frac{1}{a+b\cos\theta} d\theta = \frac{\pi}{\sqrt{a^2-b^2}}$, $a > b > 0$		[1411]
10	Show that $\int_0^{2\pi} \frac{d\theta}{1 + a^2 - 2a\cos\theta} = \frac{2\pi}{1 - a^2}$, $0 < a < 1$	[L2][CO5]	[12M]
	$\int 1 + a^2 - 2a\cos\theta \qquad 1 - a^2$		